Differential Geometry Chapter 2

Differentiable maps

We examine maps $\mathbf{f} : U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ for $U \subseteq \mathbb{R}^n$ an open subset. Let f^j , $1 \leq j \leq m$ be the coordinate functions of \mathbf{f} .

In this course we do not look at the largest class of differentiable functions, i.e. Frechet differentiable. Instead we restrict to

Definition 1 $\mathbf{f}: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ is a C^{∞} or **smooth differentiable** map if all the partial derivatives of all orders of all f^i exist and are continuous on U.

Lemma 2 Chain Rule Let $\mathbf{g} : W \subseteq \mathbb{R}^p \to \mathbb{R}^n$, with $\mathbf{g}(W) \subseteq U$, and $\mathbf{f} : U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be differentiable functions.

Let $\mathbf{h} = \mathbf{f} \circ \mathbf{g} : W \subseteq \mathbb{R}^p \to \mathbb{R}^m$.

Let y^j , $1 \leq j \leq p$ be the variables in \mathbb{R}^p and x^i , $1 \leq i \leq n$ the variables in \mathbb{R}^n . Then **h** is differentiable on W and

$$\frac{\partial \mathbf{h}}{\partial y^{j}}(\mathbf{y}) = \sum_{i=1}^{n} \frac{\partial \mathbf{f}}{\partial x^{i}}(g\left(\mathbf{y}\right)) \frac{\partial g^{i}}{\partial y^{j}}(\mathbf{y})$$

for all $1 \leq j \leq p$ and $\mathbf{y} \in W$.

Proof not given. See Calculus of Several Variables.

Example p = 1, and m = 1. So $h = f \circ \mathbf{g} : \mathbb{R} \to \mathbb{R}$. Then

$$\frac{dh}{dt}(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(\mathbf{g}(t)) \frac{dg^{i}}{dt}(t) \,. \tag{1}$$

Definition 3 Let $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable map and $\mathbf{v}_{\mathbf{p}}$ a tangent vector to \mathbb{R}^n . Then the **derivative of** f with respect to $\mathbf{v}_{\mathbf{p}}$ is

$$\mathbf{v}_{\mathbf{p}}\left[f\right] = \frac{d}{dt}f(\mathbf{p} + t\mathbf{v})_{t=0}$$

This was known as $d_{\mathbf{v}}f(\mathbf{p})$ in my Calculus of Several Variables course; the directional derivative at \mathbf{p} in the direction \mathbf{v} . (I restricted, though, to unit \mathbf{v}).

If we choose $\mathbf{g}(t) = \mathbf{p} + t\mathbf{v}$ in (1) we see that

$$\frac{d}{dt}f(\mathbf{p}+t\mathbf{v}) = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(\mathbf{p}+t\mathbf{v}) v^{i},$$

 \mathbf{SO}

$$\mathbf{v}_{\mathbf{p}}[f] = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(\mathbf{p}) v^{i}.$$

This would appear to be a dot product of $\mathbf{v}_{\mathbf{p}}$ with a vector with components $\partial f(\mathbf{p}) / \partial x^i$. This second vector is called the gradient vector:

Definition 4 Let $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable map. The gradient vector of f at \mathbf{p} is the tangent vector

$$\nabla f(\mathbf{p}) = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(\mathbf{p}) U_{i}(\mathbf{p}).$$

Thus

$$\mathbf{v}_{\mathbf{p}}\left[f\right] = \nabla f(\mathbf{p}) \bullet \mathbf{v}_{\mathbf{p}}.$$

Since $f \mapsto \nabla f(\mathbf{p})$ is a linear operator with

$$\nabla (fg)(\mathbf{p}) = \nabla f(\mathbf{p}) g(\mathbf{p}) + f(\mathbf{p}) \nabla g(\mathbf{p}) \,,$$

for $f,g:\mathbb{R}^n\to\mathbb{R}$ differentiable maps, the following follows quickly.

Lemma 5 Let $f, g : \mathbb{R}^n \to \mathbb{R}$ be differentiable maps; $\mathbf{v}_{\mathbf{p}}$, $\mathbf{w}_{\mathbf{p}}$ tangent vectors and $a, b \in \mathbb{R}$. Then

$$\begin{split} i. & (a \mathbf{v_p} + b \mathbf{w_p}) \left[f \right] = a \mathbf{v_p} \left[f \right] + b \mathbf{w_p} \left[f \right], \\ ii. & \mathbf{v_p} \left[af + bg \right] = a \mathbf{v_p} \left[f \right] + b \mathbf{v_p} \left[g \right], \\ iii. & \mathbf{v_p} \left[fg \right] = \mathbf{v_p} \left[f \right] g \left(\mathbf{p} \right) + \mathbf{v_p} \left[g \right] f \left(\mathbf{p} \right). \end{split}$$

Proof left as an exercise.

Curves in \mathbb{R}^n

Definition 6 A curve in \mathbb{R}^n is a differentiable map $\alpha : I \to \mathbb{R}^n$, from an interval $I \subseteq \mathbb{R}$.

Example 7 $\alpha(t) = \mathbf{p} + t\mathbf{v}$ is a straight line through \mathbf{p} in the \mathbf{v} direction, $\alpha(t) = (a \cos t, a \sin t, 0)$ is a circle in the x-y plane, though it is a curve in \mathbb{R}^3 ,

 $\alpha(t) = (a \cos t, a \sin t, bt)$ is a (right-hand) helix in \mathbb{R}^3 .

Definition 8 Let $\alpha : I \to \mathbb{R}^n$ be a curve in \mathbb{R}^n . The velocity vector of α at t is the tangent vector

$$\alpha'(t) = \left(\alpha'_{1}(t), ..., \alpha'_{n}(t)\right)_{\alpha(t)}^{T}.$$

Note that $\alpha'(t)$ is a vector field on the curve, i.e. to every point on the curve, $\alpha(t)$, it associates a tangent vector $\alpha'(t)$.

Question Let f be a differentiable map $f : \mathbb{R}^n \to \mathbb{R}$ and α a curve in \mathbb{R}^n . What is the rate of change of f along α ?

Lemma 9 With the notation as above

$$\frac{df(\alpha(t))}{dt} = \alpha'(t)[f].$$

Proof by (1) above,

$$\frac{df(\alpha(t))}{dt} = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(\boldsymbol{\alpha}(t)) \frac{\partial \alpha_{i}}{\partial t}(t) \,.$$

Comparing with

$$\mathbf{v}_{\mathbf{p}}[f] = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(\mathbf{p}) v^{i}$$

gives our result.

Assume that if V a vector field on \mathbb{R}^n , written as $\sum_{i=1}^n f_i U_i$, then each $f_i : \mathbb{R}^n \to \mathbb{R}$ is a differentiable map.

Given a vector field V and a path α consider

$$V(\alpha(t)) = \sum_{i=1}^{n} f_i(\alpha(t)) U_i(\alpha(t))$$

Definition 10 We define the derivative V' at a point on the curve by

$$V'(\alpha(t)) = \sum_{i=1}^{n} \frac{d}{dt} f_i(\alpha(t)) U_i(\alpha(t))$$
$$= \sum_{i=1}^{n} \alpha'(t) [f_i] U_i(\alpha(t))$$

by previous lemma.

The derivative V' is a vector field defined on the curve and represents the rate of change of $V(\mathbf{p})$ as \mathbf{p} goes along the curve.

Special Case 1. If $V(\alpha(t)) = \alpha'(t)$, (so this vector field is defined only on the curve, not all of \mathbb{R}^n), then

$$\alpha''(t) = \sum_{i=1}^{n} \frac{d^2}{dt^2} \alpha_i(t) U_i(\alpha(t)).$$

This is the **acceleration** of the curve at $\alpha(t)$.

Special Case 2. If $V = \sum_{i=1}^{n} f_i U_i$ is general but with the specific $\alpha(t) = \mathbf{p} + t\mathbf{v}$ so $\alpha'(0) = \mathbf{v}_{\mathbf{p}}$. Then

$$V'(\mathbf{p} + t\mathbf{v})|_{t=0} = \sum_{i=1}^{n} \alpha'(0)[f_i] U_i(\alpha(0))$$

Lemma 11 Let $U = \sum_{i=1}^{n} u_i U_i$, $V = \sum_{i=1}^{n} v_i U_i$ be vector fields; α a curve and write $U(t) = U(\alpha(t))$ etc. Then

- *i.* $(\lambda U + \mu V)' = \lambda U' + \mu V'$ for all $\lambda, \mu \in \mathbb{R}$,
- *ii.* $(U \bullet V)' = U' \bullet V + U \bullet V',$
- iii. If $U \bullet V : I \to \mathbb{R}$ is constant then $U' \bullet V + U \bullet V' = 0$,
- iv. For differentiable $f: I \to \mathbb{R}$

$$(fU)' = \frac{df}{dt}U + fU'.$$

Proof Exercise.

This derivative of a vector field along a curve only depends on the initial velocity of the curve, a tangent vector. So we could take this as the definition of **Definition 12** The covariant derivative of V w.r.t. $\mathbf{v_p}$ is

$$\nabla_{\mathbf{v}_{\mathbf{p}}} V = V'(\mathbf{p} + t\mathbf{v})|_{t=0} = \sum_{i=1}^{n} \mathbf{v}_{\mathbf{p}}[f_i] U_i(\mathbf{p})$$

This measures the initial rate of change of $V(\mathbf{p})$ as \mathbf{p} moves in the \mathbf{v} direction.

Lemma 13 Let $U = \sum_{i=1}^{n} u_i U_i$, $V = \sum_{i=1}^{n} v_i U_i$ be vector fields and $\mathbf{u_p}$, $\mathbf{v_p}$ tangent vectors. Then

i. for all $\lambda, \mu \in \mathbb{R}$,

$$\nabla_{\lambda \mathbf{u}_{\mathbf{p}} + \mu \mathbf{v}_{\mathbf{p}}} U = \lambda \nabla_{\mathbf{u}_{\mathbf{p}}} U + \mu \lambda \nabla_{\mathbf{v}_{\mathbf{p}}} U,$$

ii. for all $\lambda, \mu \in R$,

$$\nabla_{\mathbf{v}_{\mathbf{p}}} \left(\lambda U + \mu V \right) = \lambda \nabla_{\mathbf{v}_{\mathbf{p}}} U + \mu \nabla_{\mathbf{v}_{\mathbf{p}}} V,$$

iii. For differentiable $f: I \to \mathbb{R}$

$$\nabla_{\mathbf{v}_{\mathbf{p}}}\left(fU\right) = \mathbf{v}_{\mathbf{p}}\left[f\right]U(\mathbf{p}) + f(\mathbf{p})\,\nabla_{\mathbf{v}_{\mathbf{p}}}\left(U\right),$$

iv.

$$\mathbf{v}_{\mathbf{p}}\left[U\bullet V\right] = \nabla_{\mathbf{v}_{\mathbf{p}}}U\bullet V(\mathbf{p}) + U(\mathbf{p})\bullet\nabla_{\mathbf{v}_{\mathbf{p}}}V.$$

Proof Exercise. For example

iii. The Right Hand Side equals

$$\sum_{i=1}^{n} \mathbf{v}_{\mathbf{p}}[u_i] U_i(\mathbf{p}) \bullet \sum_{i=1}^{n} v_i(\mathbf{p}) U_i(\mathbf{p}) + \sum_{i=1}^{n} u_i(\mathbf{p}) U_i(\mathbf{p}) \bullet \sum_{i=1}^{n} \mathbf{v}_{\mathbf{p}}[v_i] U_i(\mathbf{p})$$
$$= \sum_{i=1}^{n} (\mathbf{v}_{\mathbf{p}}[u_i] v_i(\mathbf{p}) + u_i(\mathbf{p}) \mathbf{v}_{\mathbf{p}}[v_i])$$
$$= \sum_{i=1}^{n} \mathbf{v}_{\mathbf{p}}[u_i v_i] = \mathbf{v}_{\mathbf{p}} \left[\sum_{i=1}^{n} u_i v_i \right]$$
$$= \mathbf{v}_{\mathbf{p}}[U \bullet V].$$

The generalising to Vector Fields can continue. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable function and V a vector field on \mathbb{R}^n .

Definition 14 Define V[f] to be a function $\mathbb{R}^n \to \mathbb{R}$ such that

$$V[f](\mathbf{p}) = V(\mathbf{p})[f],$$

for all $\mathbf{p} \in \mathbb{R}^n$.

From $\mathbf{v}_{\mathbf{p}}[f] = \nabla f(\mathbf{p}) \bullet \mathbf{v}_{\mathbf{p}}$ we see that $V[f](\mathbf{p}) = \nabla f(\mathbf{p}) \bullet V(\mathbf{p})$, the component of the gradient vector at \mathbf{p} in the direction of $V(\mathbf{p})$. We could thus write $V[f] = \nabla f \bullet V$.

This makes it easy to prove

$$V[fg] = V[f]g + fV[g],$$
(2)

for example.

The last definition has taken the previously defined $\mathbf{v}_{\mathbf{p}}[f]$ to defined V[f]. Similarly we can take the previously defined $\nabla_{\mathbf{v}_{\mathbf{p}}}W$ to define $\nabla_{V}W$:

Definition 15 If V, W are vector fields on \mathbb{R}^n then $\nabla_V W$ is a vector field on \mathbb{R}^n such that

$$\nabla_V W(\mathbf{p}) = \nabla_{V(\mathbf{p})} W$$

for all $\mathbf{p} \in \mathbb{R}^n$.

By the definition $\nabla_{\mathbf{v}_{\mathbf{p}}} V = \sum_{i=1}^{n} \mathbf{v}_{\mathbf{p}}[f_i] U_i(p)$ we have

$$\nabla_V W(\mathbf{p}) = \nabla_{V(\mathbf{p})} W = \sum_{i=1}^n V(\mathbf{p}) [w_i] \ U_i(\mathbf{p}) = \sum_{i=1}^n V[w_i] (\mathbf{p}) \ U_i(\mathbf{p}),$$

having used the previous definition. Thus we can write

$$\nabla_V W = \sum_{i=1}^n V[w_i] \ U_i.$$

Then, for differentiable $f : \mathbb{R}^n \to \mathbb{R}$ result (2) gives

$$\nabla_V (fW) = \sum_{i=1}^n \left(fV[w_i] + w_i V[f] \right) U_i$$
$$= \nabla_V (W) f + V[f] W.$$

Or, for two vector fields $U = \sum_{i=1}^{n} u_i U_i$ and $W = \sum_{i=1}^{n} w_i U_i$ on \mathbb{R}^n ,

$$V[U \bullet W] = V\left[\sum_{i=1}^{n} u_i w_i\right]$$

= $\sum_{i=1}^{n} V[u_i w_i]$ since V is linear, see ()
= $\sum_{i=1}^{n} (u_i V[w_i] + w_i V[u_i])$ by ()
= $U \bullet \nabla_V (W) + W \bullet \nabla_V (U)$.

Recap

For $\mathbf{v}_{\mathbf{p}} \in T(\mathbb{R}^3)$ and differentiable $f : \mathbb{R}^3 \to \mathbb{R}$ we define $\mathbf{v}_{\mathbf{p}}[f] = f'(\mathbf{p} + t\mathbf{v})|_{t=0} \in \mathbb{R}$.

A vector field on \mathbb{R}^3 is a map $V : \mathbb{R}^3 \to T(\mathbb{R}^3)$ such that for $\mathbf{p} \in \mathbb{R}^3$, $V(\mathbf{p}) \in T_{\mathbf{p}}(\mathbb{R}^3)$. Then we can define $V[f] : \mathbb{R}^3 \to \mathbb{R}$, $\mathbf{p} \mapsto V(\mathbf{p})[f]$.

Alternatively given a vector field W on \mathbb{R}^3 and $\mathbf{v}_{\mathbf{p}} \in T(\mathbb{R}^3)$ we could follow the definition of $\mathbf{v}_{\mathbf{p}}[f]$ and define $\mathbf{v}_{\mathbf{p}}[W] = W'(\mathbf{p} + t\mathbf{v})|_{t=0} \in T_{\mathbf{p}}(\mathbb{R}^3)$. In fact, this is denoted by $\nabla_{\mathbf{v}_{\mathbf{p}}}[W]$.

Now we have the definition of $\nabla_{\mathbf{v}_{\mathbf{p}}}[W]$ given V, another vector space on \mathbb{R}^3 , define $\nabla_V[W] : \mathbb{R}^3 \to T(\mathbb{R}^3)$ by $\nabla_V[W](\mathbf{p}) = \nabla_{V(\mathbf{p})}[W]$.

All the quantities measure the initial rate of change of either a scalar -valued function or vector field as you leave a point \mathbf{p} in direction \mathbf{v} . The direction will either be given or will be the value of some vector field at \mathbf{p} .

1-forms

Definition 16 A 1-form ϕ on \mathbb{R}^3 is a real-valued function on the set of all tangent vectors to \mathbb{R}^3 such that ϕ is linear at each point of \mathbb{R}^3 , that is

$$\phi(a \mathbf{v}_{\mathbf{p}} + b \mathbf{w}_{\mathbf{p}}) = a \phi(\mathbf{v}_{\mathbf{p}}) + b \phi(\mathbf{w}_{\mathbf{p}}),$$

for all $a, b \in \mathbb{R}$, $\mathbf{v_p}, \mathbf{w_p} \in T_{\mathbf{p}}(\mathbb{R}^3)$ for all $\mathbf{p} \in \mathbb{R}^3$.

So $\phi : T(\mathbb{R}^3) \to \mathbb{R}$. On an initial glance this appears different to the differential 1-form defined in the Calculus of Several Variables course as a function $\boldsymbol{\omega} : U \subseteq \mathbb{R}^n \to \operatorname{Hom}(\mathbb{R}^n, \mathbb{R})$. But to evaluate $\boldsymbol{\omega}$ in CoSV we need take $\mathbf{p} \in U$ and $\mathbf{v} \in \mathbb{R}^n$ when $\boldsymbol{\omega}_{\mathbf{p}}(\mathbf{v})$ can then be calculated. We can say that $\boldsymbol{\omega}$ depends on, is a function of, $\mathbf{v}_{\mathbf{p}}$. For this reason, given $\boldsymbol{\omega}$ satisfying the CoSV definition of a 1-form define $\tilde{\boldsymbol{\omega}} : T(\mathbb{R}^3) \to \mathbb{R}$ by $\tilde{\boldsymbol{\omega}}(\mathbf{v}_{\mathbf{p}}) = \boldsymbol{\omega}_{\mathbf{p}}(\mathbf{v}) \in \mathbb{R}$ for all $\mathbf{v}_{\mathbf{p}} \in T(\mathbb{R}^3)$. This new function $\tilde{\boldsymbol{\omega}}$ is linear because of the definition of Hom $(\mathbb{R}^n, \mathbb{R})$ as the set of linear functions and so $\tilde{\boldsymbol{\omega}}$ satisfies definition 16.

Note from above that, given the differentiable $f : \mathbb{R}^3 \to \mathbb{R}$, the derivative $\mathbf{v}_{\mathbf{p}}[f]$ is linear in that $\mathbf{v}_{\mathbf{p}}[af + bg] = a \mathbf{v}_{\mathbf{p}}[f] + b \mathbf{v}_{\mathbf{p}}[g]$. So we have an example of a 1-form satisfying definition 16 in the following.

Definition 17 Given the differentiable $f : \mathbb{R}^3 \to \mathbb{R}$, the differential 1form df is defined by

$$df(\mathbf{v}_{\mathbf{p}}) = \mathbf{v}_{\mathbf{p}}[f],$$

for all tangent vectors $\mathbf{v}_{\mathbf{p}}$.

This can be shown to have all the properties seen in the CoSV course. For example, label the projection functions as $x^i : \mathbb{R}^3 \to \mathbb{R}, \mathbf{x} \mapsto x^i, i = 1, 2$ or 3. Then, for $\mathbf{v_p} \in T(\mathbb{R}^3)$,

$$dx^{i}(\mathbf{v}_{\mathbf{p}}) = \left. \frac{d}{dt} x^{i}(\mathbf{p} + t\mathbf{v}) \right|_{t=0} = \left. \frac{d}{dt} \left(p^{i} + tv^{i} \right) \right|_{t=0} = v^{i},$$

for i = 1, 2 and 3.

Given a 1-form ϕ (satisfying definition 16) write $\mathbf{v}_{\mathbf{p}} = \sum_{j=1}^{3} v^{j} U_{j}(\mathbf{p})$ so, by linearity,

$$\phi(\mathbf{v}_{\mathbf{p}}) = \sum_{j=1}^{3} v^{j} \phi\left(U_{j}(\mathbf{p})\right) = \sum_{j=1}^{3} \phi_{j}(\mathbf{v}_{\mathbf{p}}) dx^{i}(\mathbf{v}_{\mathbf{p}})$$

where $\phi_j : T(\mathbb{R}^3) \to \mathbb{R}$ is defined by $\mathbf{v}_{\mathbf{p}} \mapsto \phi(U_j(\mathbf{p}))$. Thus we can write $\phi = \sum_{j=1}^3 \phi_j dx^i$.

If $\phi = df$ for some differentiable f then

$$df(U_j(\mathbf{p})) = \left. \frac{d}{dt} f\left(\mathbf{p} + t U_i\right) \right|_{t=0} = \frac{\partial}{\partial x^i} f(\mathbf{p}) \,.$$

and so

$$df(\mathbf{v}_{\mathbf{p}}) = \sum_{j=1}^{3} v^{j} df(U_{j}(\mathbf{p})) = \sum_{j=1}^{3} \frac{\partial}{\partial x^{i}} f(\mathbf{p}) dx^{i}(\mathbf{v}_{\mathbf{p}}).$$

So we can write

$$df = \sum_{j=1}^{3} \frac{\partial f}{\partial x^i} dx^i.$$

Jacobian Matrix

Definition 18 Let $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^m$ be a mapping. Then define the **derivative** map \mathbf{F}_* on $T(\mathbb{R}^n)$ as follows. Given $\mathbf{v} \in T(\mathbb{R}^n)$ there exists $\mathbf{p} \in \mathbb{R}^n$ such that $\mathbf{v} = \mathbf{v}_{\mathbf{p}} \in T_{\mathbf{p}}(\mathbb{R}^n)$. Then set

$$\mathbf{F}_{*}\left(\mathbf{v}\right) = \left.\frac{d}{dt}\mathbf{F}(\mathbf{p}+t\mathbf{v})\right|_{t=0}$$

This is the derivative of a curve $t \mapsto \mathbf{F}(\mathbf{p} + t\mathbf{v})$ and so a tangent vector (with point of application $\mathbf{F}(\mathbf{p})$). Thus $\mathbf{F}_* : T(\mathbb{R}^n) \to T(\mathbb{R}^m)$.

We cannot say that \mathbf{F}_* is linear since we can only add together vectors with the same point of application. But we can restrict \mathbf{F}_* to $T_{\mathbf{p}}(\mathbb{R}^n)$, getting the map $\mathbf{F}_{*\mathbf{p}} : T_{\mathbf{p}}(\mathbb{R}^n) \to T_{\mathbf{F}(\mathbf{p})}(\mathbb{R}^m)$. This map is linear and the matrix associated with this linear map is the **Jacobian matrix of F at p**.