Differential Geometry Chapter 2

Differentiable maps

We examine maps $\mathbf{f}: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ for $U \subseteq \mathbb{R}^{n}$ an open subset. Let f^{j}, $1 \leq j \leq m$ be the coordinate functions of \mathbf{f}.

In this course we do not look at the largest class of differentiable functions, i.e. Frechet differentiable. Instead we restrict to

Definition $1 \mathbf{f}: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a C^{∞} or smooth differentiable map if all the partial derivatives of all orders of all f^{i} exist and are continuous on U.

Lemma 2 Chain Rule Let $\mathbf{g}: W \subseteq \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$, with $\mathbf{g}(W) \subseteq U$, and $\mathbf{f}: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be differentiable functions.

Let $\mathbf{h}=\mathbf{f} \circ \mathbf{g}: W \subseteq \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}$.
Let $y^{j}, 1 \leq j \leq p$ be the variables in \mathbb{R}^{p} and $x^{i}, 1 \leq i \leq n$ the variables in \mathbb{R}^{n}. Then \mathbf{h} is differentiable on W and

$$
\frac{\partial \mathbf{h}}{\partial y^{j}}(\mathbf{y})=\sum_{i=1}^{n} \frac{\partial \mathbf{f}}{\partial x^{i}}(g(\mathbf{y})) \frac{\partial g^{i}}{\partial y^{j}}(\mathbf{y})
$$

for all $1 \leq j \leq p$ and $\mathbf{y} \in W$.
Proof not given. See Calculus of Several Variables.
Example $p=1$, and $m=1$. So $h=f \circ \mathbf{g}: \mathbb{R} \rightarrow \mathbb{R}$. Then

$$
\begin{equation*}
\frac{d h}{d t}(t)=\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(\mathbf{g}(t)) \frac{d g^{i}}{d t}(t) \tag{1}
\end{equation*}
$$

Definition 3 Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable map and $\mathbf{v}_{\mathbf{p}}$ a tangent vector to \mathbb{R}^{n}. Then the derivative of f with respect to $\mathbf{v}_{\mathbf{p}}$ is

$$
\mathbf{v}_{\mathbf{p}}[f]=\frac{d}{d t} f(\mathbf{p}+t \mathbf{v})_{t=0} .
$$

This was known as $d_{\mathbf{v}} f(\mathbf{p})$ in my Calculus of Several Variables course; the directional derivative at \mathbf{p} in the direction \mathbf{v}. (I restricted, though, to unit v).

If we choose $\mathbf{g}(t)=\mathbf{p}+t \mathbf{v}$ in (1) we see that

$$
\frac{d}{d t} f(\mathbf{p}+t \mathbf{v})=\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(\mathbf{p}+t \mathbf{v}) v^{i}
$$

so

$$
\mathbf{v}_{\mathbf{p}}[f]=\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(\mathbf{p}) v^{i} .
$$

This would appear to be a dot product of $\mathbf{v}_{\mathbf{p}}$ with a vector with components $\partial f(\mathbf{p}) / \partial x^{i}$. This second vector is called the gradient vector:

Definition 4 Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable map. The gradient vector of f at \mathbf{p} is the tangent vector

$$
\nabla f(\mathbf{p})=\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(\mathbf{p}) U_{i}(\mathbf{p})
$$

Thus

$$
\mathbf{v}_{\mathbf{p}}[f]=\nabla f(\mathbf{p}) \bullet \mathbf{v}_{\mathbf{p}}
$$

Since $f \mapsto \nabla f(\mathbf{p})$ is a linear operator with

$$
\nabla(f g)(\mathbf{p})=\nabla f(\mathbf{p}) g(\mathbf{p})+f(\mathbf{p}) \nabla g(\mathbf{p}),
$$

for $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ differentiable maps, the following follows quickly.
Lemma 5 Let $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable maps; $\mathbf{v}_{\mathbf{p}}, \mathbf{w}_{\mathbf{p}}$ tangent vectors and $a, b \in \mathbb{R}$. Then
i. $\left(a \mathbf{v}_{\mathbf{p}}+b \mathbf{w}_{\mathbf{p}}\right)[f]=a \mathbf{v}_{\mathbf{p}}[f]+b \mathbf{w}_{\mathbf{p}}[f]$,
ii. $\mathbf{v}_{\mathbf{p}}[a f+b g]=a \mathbf{v}_{\mathbf{p}}[f]+b \mathbf{v}_{\mathbf{p}}[g]$,
iii. $\mathbf{v}_{\mathbf{p}}[f g]=\mathbf{v}_{\mathbf{p}}[f] g(\mathbf{p})+\mathbf{v}_{\mathbf{p}}[g] f(\mathbf{p})$.

Proof left as an exercise.
Curves in \mathbb{R}^{n}

Definition 6 A curve in \mathbb{R}^{n} is a differentiable map $\alpha: I \rightarrow \mathbb{R}^{n}$, from an interval $I \subseteq \mathbb{R}$.

Example $7 \alpha(t)=\mathbf{p}+t \mathbf{v}$ is a straight line through \mathbf{p} in the \mathbf{v} direction, $\alpha(t)=(a \cos t, a \sin t, 0)$ is a circle in the $x-y$ plane, though it is a curve in \mathbb{R}^{3},
$\alpha(t)=(a \cos t, a \sin t, b t)$ is a (right-hand) helix in \mathbb{R}^{3}.
Definition 8 Let $\alpha: I \rightarrow \mathbb{R}^{n}$ be a curve in \mathbb{R}^{n}. The velocity vector of α at t is the tangent vector

$$
\alpha^{\prime}(t)=\left(\alpha_{1}^{\prime}(t), \ldots, \alpha_{n}^{\prime}(t)\right)_{\alpha(t)}^{T}
$$

Note that $\alpha^{\prime}(t)$ is a vector field on the curve, i.e. to every point on the curve, $\alpha(t)$, it associates a tangent vector $\alpha^{\prime}(t)$.

Question Let f be a differentiable map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and α a curve in \mathbb{R}^{n}. What is the rate of change of f along α ?

Lemma 9 With the notation as above

$$
\frac{d f(\alpha(t))}{d t}=\alpha^{\prime}(t)[f] .
$$

Proof by (1) above,

$$
\frac{d f(\alpha(t))}{d t}=\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(\boldsymbol{\alpha}(t)) \frac{\partial \alpha_{i}}{\partial t}(t) .
$$

Comparing with

$$
\mathbf{v}_{\mathbf{p}}[f]=\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(\mathbf{p}) v^{i}
$$

gives our result.
Assume that if V a vector field on \mathbb{R}^{n}, written as $\sum_{i=1}^{n} f_{i} U_{i}$, then each $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a differentiable map.

Given a vector field V and a path α consider

$$
V(\alpha(t))=\sum_{i=1}^{n} f_{i}(\alpha(t)) U_{i}(\alpha(t)) .
$$

Definition 10 We define the derivative V^{\prime} at a point on the curve by

$$
\begin{aligned}
V^{\prime}(\alpha(t)) & =\sum_{i=1}^{n} \frac{d}{d t} f_{i}(\alpha(t)) U_{i}(\alpha(t)) \\
& =\sum_{i=1}^{n} \alpha^{\prime}(t)\left[f_{i}\right] U_{i}(\alpha(t))
\end{aligned}
$$

by previous lemma.
The derivative V^{\prime} is a vector field defined on the curve and represents the rate of change of $V(\mathbf{p})$ as \mathbf{p} goes along the curve.

Special Case 1. If $V(\alpha(t))=\alpha^{\prime}(t)$, (so this vector field is defined only on the curve, not all of $\left.\mathbb{R}^{n}\right)$, then

$$
\alpha^{\prime \prime}(t)=\sum_{i=1}^{n} \frac{d^{2}}{d t^{2}} \alpha_{i}(t) U_{i}(\alpha(t)) .
$$

This is the acceleration of the curve at $\alpha(t)$.
Special Case 2. If $V=\sum_{i=1}^{n} f_{i} U_{i}$ is general but with the specific $\alpha(t)=$ $\mathbf{p}+t \mathbf{v}$ so $\alpha^{\prime}(0)=\mathbf{v}_{\mathbf{p}}$. Then

$$
\left.V^{\prime}(\mathbf{p}+t \mathbf{v})\right|_{t=0}=\sum_{i=1}^{n} \alpha^{\prime}(0)\left[f_{i}\right] U_{i}(\alpha(0)) .
$$

Lemma 11 Let $U=\sum_{i=1}^{n} u_{i} U_{i}, V=\sum_{i=1}^{n} v_{i} U_{i}$ be vector fields; α a curve and write $U(t)=U(\alpha(t))$ etc. Then
i. $(\lambda U+\mu V)^{\prime}=\lambda U^{\prime}+\mu V^{\prime}$ for all $\lambda, \mu \in \mathbb{R}$,
ii. $(U \bullet V)^{\prime}=U^{\prime} \bullet V+U \bullet V^{\prime}$,
iii. If $U \bullet V: I \rightarrow \mathbb{R}$ is constant then $U^{\prime} \bullet V+U \bullet V^{\prime}=0$,
iv. For differentiable $f: I \rightarrow \mathbb{R}$

$$
(f U)^{\prime}=\frac{d f}{d t} U+f U^{\prime}
$$

Proof Exercise.
This derivative of a vector field along a curve only depends on the initial velocity of the curve, a tangent vector. So we could take this as the definition of

Definition 12 The covariant derivative of V w.r.t. $\mathbf{v}_{\mathbf{p}}$ is

$$
\nabla_{\mathbf{v}_{\mathbf{p}}} V=\left.V^{\prime}(\mathbf{p}+t \mathbf{v})\right|_{t=0}=\sum_{i=1}^{n} \mathbf{v}_{\mathbf{p}}\left[f_{i}\right] U_{i}(\mathbf{p}) .
$$

This measures the initial rate of change of $V(\mathbf{p})$ as \mathbf{p} moves in the \mathbf{v} direction.

Lemma 13 Let $U=\sum_{i=1}^{n} u_{i} U_{i}, V=\sum_{i=1}^{n} v_{i} U_{i}$ be vector fields and $\mathbf{u}_{\mathbf{p}}, \mathbf{v}_{\mathbf{p}}$ tangent vectors. Then
i. for all $\lambda, \mu \in \mathbb{R}$,

$$
\nabla_{\lambda \mathbf{u}_{\mathbf{p}}+\mu \mathbf{v}_{\mathbf{p}}} U=\lambda \nabla_{\mathbf{u}_{\mathbf{p}}} U+\mu \lambda \nabla_{\mathbf{v}_{\mathbf{p}}} U,
$$

ii. for all $\lambda, \mu \in R$,

$$
\nabla_{\mathbf{v}_{\mathbf{p}}}(\lambda U+\mu V)=\lambda \nabla_{\mathbf{v}_{\mathbf{p}}} U+\mu \nabla_{\mathbf{v}_{\mathbf{p}}} V,
$$

iii. For differentiable $f: I \rightarrow \mathbb{R}$

$$
\nabla_{\mathbf{v}_{\mathbf{p}}}(f U)=\mathbf{v}_{\mathbf{p}}[f] U(\mathbf{p})+f(\mathbf{p}) \nabla_{\mathbf{v}_{\mathbf{p}}}(U),
$$

iv.

$$
\mathbf{v}_{\mathbf{p}}[U \bullet V]=\nabla_{\mathbf{v}_{\mathbf{p}}} U \bullet V(\mathbf{p})+U(\mathbf{p}) \bullet \nabla_{\mathbf{v}_{\mathbf{p}}} V .
$$

Proof Exercise. For example
iii. The Right Hand Side equals

$$
\begin{aligned}
& \sum_{i=1}^{n} \mathbf{v}_{\mathbf{p}}\left[u_{i}\right] U_{i}(\mathbf{p}) \bullet \sum_{i=1}^{n} v_{i}(\mathbf{p}) U_{i}(\mathbf{p})+\sum_{i=1}^{n} u_{i}(\mathbf{p}) U_{i}(\mathbf{p}) \bullet \sum_{i=1}^{n} \mathbf{v}_{\mathbf{p}}\left[v_{i}\right] U_{i}(\mathbf{p}) \\
= & \sum_{i=1}^{n}\left(\mathbf{v}_{\mathbf{p}}\left[u_{i}\right] v_{i}(\mathbf{p})+u_{i}(\mathbf{p}) \mathbf{v}_{\mathbf{p}}\left[v_{i}\right]\right) \\
= & \sum_{i=1}^{n} \mathbf{v}_{\mathbf{p}}\left[u_{i} v_{i}\right]=\mathbf{v}_{\mathbf{p}}\left[\sum_{i=1}^{n} u_{i} v_{i}\right] \\
= & \mathbf{v}_{\mathbf{p}}[U \bullet V] .
\end{aligned}
$$

The generalising to Vector Fields can continue. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable function and V a vector field on \mathbb{R}^{n}.

Definition 14 Define $V[f]$ to be a function $\mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
V[f](\mathbf{p})=V(\mathbf{p})[f],
$$

for all $\mathbf{p} \in \mathbb{R}^{n}$.
From $\mathbf{v}_{\mathbf{p}}[f]=\nabla f(\mathbf{p}) \bullet \mathbf{v}_{\mathbf{p}}$ we see that $V[f](\mathbf{p})=\nabla f(\mathbf{p}) \bullet V(\mathbf{p})$, the component of the gradient vector at \mathbf{p} in the direction of $V(\mathbf{p})$. We could thus write $V[f]=\nabla f \bullet V$.

This makes it easy to prove

$$
\begin{equation*}
V[f g]=V[f] g+f V[g], \tag{2}
\end{equation*}
$$

for example.
The last definition has taken the previously defined $\mathbf{v}_{\mathbf{p}}[f]$ to defined $V[f]$. Similarly we can take the previously defined $\nabla_{\mathbf{v}_{\mathbf{p}}} W$ to define $\nabla_{V} W$:

Definition 15 If V, W are vector fields on \mathbb{R}^{n} then $\nabla_{V} W$ is a vector field on \mathbb{R}^{n} such that

$$
\nabla_{V} W(\mathbf{p})=\nabla_{V(\mathbf{p})} W
$$

for all $\mathbf{p} \in \mathbb{R}^{n}$.
By the definition $\nabla_{\mathbf{v}_{\mathbf{p}}} V=\sum_{i=1}^{n} \mathbf{v}_{\mathbf{p}}\left[f_{i}\right] U_{i}(p)$ we have

$$
\nabla_{V} W(\mathbf{p})=\nabla_{V(\mathbf{p})} W=\sum_{i=1}^{n} V(\mathbf{p})\left[w_{i}\right] U_{i}(\mathbf{p})=\sum_{i=1}^{n} V\left[w_{i}\right](\mathbf{p}) U_{i}(\mathbf{p}),
$$

having used the previous definition. Thus we can write

$$
\nabla_{V} W=\sum_{i=1}^{n} V\left[w_{i}\right] U_{i} .
$$

Then, for differentiable $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ result (2) gives

$$
\begin{aligned}
\nabla_{V}(f W) & =\sum_{i=1}^{n}\left(f V\left[w_{i}\right]+w_{i} V[f]\right) U_{i} \\
& =\nabla_{V}(W) f+V[f] W .
\end{aligned}
$$

Or, for two vector fields $U=\sum_{i=1}^{n} u_{i} U_{i}$ and $W=\sum_{i=1}^{n} w_{i} U_{i}$ on \mathbb{R}^{n},

$$
\begin{aligned}
V[U \bullet W] & =V\left[\sum_{i=1}^{n} u_{i} w_{i}\right] \\
& =\sum_{i=1}^{n} V\left[u_{i} w_{i}\right] \quad \text { since } V \text { is linear, see }() . \\
& =\sum_{i=1}^{n}\left(u_{i} V\left[w_{i}\right]+w_{i} V\left[u_{i}\right]\right) \quad \text { by }() \\
& =U \bullet \nabla_{V}(W)+W \bullet \nabla_{V}(U) .
\end{aligned}
$$

Recap

For $\mathbf{v}_{\mathbf{p}} \in T\left(\mathbb{R}^{3}\right)$ and differentiable $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ we define $\mathbf{v}_{\mathbf{p}}[f]=$ $\left.f^{\prime}(\mathbf{p}+t \mathbf{v})\right|_{t=0} \in \mathbb{R}$.

A vector field on \mathbb{R}^{3} is a map $V: \mathbb{R}^{3} \rightarrow T\left(\mathbb{R}^{3}\right)$ such that for $\mathbf{p} \in \mathbb{R}^{3}$, $V(\mathbf{p}) \in T_{\mathbf{p}}\left(\mathbb{R}^{3}\right)$. Then we can define $V[f]: \mathbb{R}^{3} \rightarrow \mathbb{R}, \mathbf{p} \mapsto V(\mathbf{p})[f]$.

Alternatively given a vector field W on \mathbb{R}^{3} and $\mathbf{v}_{\mathbf{p}} \in T\left(\mathbb{R}^{3}\right)$ we could follow the definition of $\mathbf{v}_{\mathbf{p}}[f]$ and define $\mathbf{v}_{\mathbf{p}}[W]=\left.W^{\prime}(\mathbf{p}+t \mathbf{v})\right|_{t=0} \in T_{\mathbf{p}}\left(\mathbb{R}^{3}\right)$. In fact, this is denoted by $\nabla_{\mathbf{v}_{\mathbf{p}}}[W]$.

Now we have the definition of $\nabla_{\mathbf{v}_{\mathbf{p}}}[W]$ given V, another vector space on \mathbb{R}^{3}, define $\nabla_{V}[W]: \mathbb{R}^{3} \rightarrow T\left(\mathbb{R}^{3}\right)$ by $\nabla_{V}[W](\mathbf{p})=\nabla_{V(\mathbf{p})}[W]$.

All the quantities measure the initial rate of change of either a scalar -valued function or vector field as you leave a point \mathbf{p} in direction \mathbf{v}. The direction will either be given or will be the value of some vector field at \mathbf{p}.

1-forms

Definition 16 A 1-form ϕ on \mathbb{R}^{3} is a real-valued function on the set of all tangent vectors to \mathbb{R}^{3} such that ϕ is linear at each point of \mathbb{R}^{3}, that is

$$
\phi\left(a \mathbf{v}_{\mathbf{p}}+b \mathbf{w}_{\mathbf{p}}\right)=a \phi\left(\mathbf{v}_{\mathbf{p}}\right)+b \phi\left(\mathbf{w}_{\mathbf{p}}\right),
$$

for all $a, b \in \mathbb{R}, \mathbf{v}_{\mathbf{p}}, \mathbf{w}_{\mathbf{p}} \in T_{\mathbf{p}}\left(\mathbb{R}^{3}\right)$ for all $\mathbf{p} \in \mathbb{R}^{3}$.
So $\phi: T\left(\mathbb{R}^{3}\right) \rightarrow \mathbb{R}$. On an initial glance this appears different to the differential 1-form defined in the Calculus of Several Variables course as a function $\boldsymbol{\omega}: U \subseteq \mathbb{R}^{n} \rightarrow \operatorname{Hom}\left(\mathbb{R}^{n}, \mathbb{R}\right)$. But to evaluate $\boldsymbol{\omega}$ in CoSV we need take $\mathbf{p} \in U$ and $\mathbf{v} \in \mathbb{R}^{n}$ when $\boldsymbol{\omega}_{\mathbf{p}}(\mathbf{v})$ can then be calculated. We can say that $\boldsymbol{\omega}$ depends on, is a function of, $\mathbf{v}_{\mathbf{p}}$. For this reason, given $\boldsymbol{\omega}$ satisfying the CoSV definition of a 1-form define $\widetilde{\boldsymbol{\omega}}: T\left(\mathbb{R}^{3}\right) \rightarrow \mathbb{R}$ by $\widetilde{\boldsymbol{\omega}}\left(\mathbf{v}_{\mathbf{p}}\right)=\boldsymbol{\omega}_{\mathbf{p}}(\mathbf{v}) \in \mathbb{R}$ for all $\mathbf{v}_{\mathbf{p}} \in T\left(\mathbb{R}^{3}\right)$. This new function $\widetilde{\boldsymbol{\omega}}$ is linear because of the definition of $\operatorname{Hom}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ as the set of linear functions and so $\widetilde{\boldsymbol{\omega}}$ satisfies definition 16 .

Note from above that, given the differentiable $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, the derivative $\mathbf{v}_{\mathbf{p}}[f]$ is linear in that $\mathbf{v}_{\mathbf{p}}[a f+b g]=a \mathbf{v}_{\mathbf{p}}[f]+b \mathbf{v}_{\mathbf{p}}[g]$. So we have an example of a 1 -form satisfying definition 16 in the following.

Definition 17 Given the differentiable $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$,the differential 1form df is defined by

$$
d f\left(\mathbf{v}_{\mathbf{p}}\right)=\mathbf{v}_{\mathbf{p}}[f],
$$

for all tangent vectors $\mathbf{v}_{\mathbf{p}}$.
This can be shown to have all the properties seen in the CoSV course. For example, label the projection functions as $x^{i}: \mathbb{R}^{3} \rightarrow \mathbb{R}, \mathbf{x} \mapsto x^{i}, i=1,2$ or 3. Then, for $\mathbf{v}_{\mathbf{p}} \in T\left(\mathbb{R}^{3}\right)$,

$$
d x^{i}\left(\mathbf{v}_{\mathbf{p}}\right)=\left.\frac{d}{d t} x^{i}(\mathbf{p}+t \mathbf{v})\right|_{t=0}=\left.\frac{d}{d t}\left(p^{i}+t v^{i}\right)\right|_{t=0}=v^{i},
$$

for $i=1,2$ and 3 .
Given a 1-form ϕ (satisfying definition 16) write $\mathbf{v}_{\mathbf{p}}=\sum_{j=1}^{3} v^{j} U_{j}(\mathbf{p})$ so, by linearity,

$$
\phi\left(\mathbf{v}_{\mathbf{p}}\right)=\sum_{j=1}^{3} v^{j} \phi\left(U_{j}(\mathbf{p})\right)=\sum_{j=1}^{3} \phi_{j}\left(\mathbf{v}_{\mathbf{p}}\right) d x^{i}\left(\mathbf{v}_{\mathbf{p}}\right)
$$

where $\phi_{j}: T\left(\mathbb{R}^{3}\right) \rightarrow \mathbb{R}$ is defined by $\mathbf{v}_{\mathbf{p}} \mapsto \phi\left(U_{j}(\mathbf{p})\right)$. Thus we can write $\phi=\sum_{j=1}^{3} \phi_{j} d x^{i}$.

If $\phi=d f$ for some differentiable f then

$$
d f\left(U_{j}(\mathbf{p})\right)=\left.\frac{d}{d t} f\left(\mathbf{p}+t U_{i}\right)\right|_{t=0}=\frac{\partial}{\partial x^{i}} f(\mathbf{p}) .
$$

and so

$$
d f\left(\mathbf{v}_{\mathbf{p}}\right)=\sum_{j=1}^{3} v^{j} d f\left(U_{j}(\mathbf{p})\right)=\sum_{j=1}^{3} \frac{\partial}{\partial x^{i}} f(\mathbf{p}) d x^{i}\left(\mathbf{v}_{\mathbf{p}}\right) .
$$

So we can write

$$
d f=\sum_{j=1}^{3} \frac{\partial f}{\partial x^{i}} d x^{i}
$$

Jacobian Matrix

Definition 18 Let $\mathbf{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a mapping. Then define the derivative map \mathbf{F}_{*} on $T\left(\mathbb{R}^{n}\right)$ as follows. Given $\mathbf{v} \in T\left(\mathbb{R}^{n}\right)$ there exists $\mathbf{p} \in \mathbb{R}^{n}$ such that $\mathbf{v}=\mathbf{v}_{\mathbf{p}} \in T_{\mathbf{p}}\left(\mathbb{R}^{n}\right)$. Then set

$$
\mathbf{F}_{*}(\mathbf{v})=\left.\frac{d}{d t} \mathbf{F}(\mathbf{p}+t \mathbf{v})\right|_{t=0}
$$

This is the derivative of a curve $t \mapsto \mathbf{F}(\mathbf{p}+t \mathbf{v})$ and so a tangent vector (with point of application $\mathbf{F}(\mathbf{p})$). Thus $\mathbf{F}_{*}: T\left(\mathbb{R}^{n}\right) \rightarrow T\left(\mathbb{R}^{m}\right)$.

We cannot say that \mathbf{F}_{*} is linear since we can only add together vectors with the same point of application. But we can restrict \mathbf{F}_{*} to $T_{\mathbf{p}}\left(\mathbb{R}^{n}\right)$, getting the map $\mathbf{F}_{* \mathbf{p}}: T_{\mathbf{p}}\left(\mathbb{R}^{n}\right) \rightarrow T_{\mathbf{F}(\mathbf{p})}\left(\mathbb{R}^{m}\right)$. This map is linear and the matrix associated with this linear map is the Jacobian matrix of \mathbf{F} at \mathbf{p}.

