
Differential Geometry Chapter 2

Differentiable maps

We examine maps f : U ⊆ Rn → Rm for U ⊆ Rn an open subset. Let f j,

1≤j≤m be the coordinate functions of f .

In this course we do not look at the largest class of differentiable functions,

i.e. Frechet differentiable. Instead we restrict to

Definition 1 f : U ⊆ Rn → Rm is a C∞ or smooth differentiable map if

all the partial derivatives of all orders of all f i exist and are continuous on

U .

Lemma 2 Chain Rule Let g : W ⊆ Rp → Rn, with g (W ) ⊆ U, and

f : U ⊆ Rn → Rm be differentiable functions.

Let h = f ◦ g : W ⊆ Rp → Rm.

Let yj, 1≤ j≤p be the variables in Rp and xi, 1 ≤ i ≤ n the variables in

Rn. Then h is differentiable on W and

∂h

∂yj
(y) =

n∑
i=1

∂f

∂xi
(g (y))

∂gi

∂yj
(y)

for all 1≤j≤p and y ∈ W.

Proof not given. See Calculus of Several Variables.

Example p = 1, and m = 1. So h = f ◦ g : R→ R. Then

dh

dt
(t) =

n∑
i=1

∂f

∂xi
(g (t))

dgi

dt
(t) . (1)

Definition 3 Let f : Rn → R be a differentiable map and vp a tangent

vector to Rn. Then the derivative of f with respect to vp is

vp [f ] =
d

dt
f(p + tv)t=0 .
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This was known as dvf(p) in my Calculus of Several Variables course; the

directional derivative at p in the direction v. (I restricted, though, to unit

v).

If we choose g (t) = p + tv in (1) we see that

d

dt
f(p + tv) =

n∑
i=1

∂f

∂xi
(p + tv) vi,

so

vp [f ] =
n∑
i=1

∂f

∂xi
(p) vi.

This would appear to be a dot product of vp with a vector with compo-

nents ∂f(p) /∂xi. This second vector is called the gradient vector:

Definition 4 Let f : Rn → R be a differentiable map. The gradient vector

of f at p is the tangent vector

∇f(p) =
n∑
i=1

∂f

∂xi
(p)Ui (p) .

Thus

vp [f ] = ∇f(p) • vp.

Since f 7→ ∇f(p) is a linear operator with

∇ (fg)(p) = ∇f(p) g(p) + f(p)∇g(p) ,

for f, g : Rn → R differentiable maps, the following follows quickly.

Lemma 5 Let f, g : Rn → R be differentiable maps; vp, wp tangent vectors

and a, b ∈ R. Then

i. (avp + bwp) [f ] = avp [f ] + bwp [f ] ,

ii. vp [af + bg] = avp [f ] + bvp [g] ,

iii. vp [fg] = vp [f ] g (p) + vp [g] f (p) .

Proof left as an exercise. �

Curves in Rn
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Definition 6 A curve in Rn is a differentiable map α : I → Rn, from an

interval I ⊆ R.

Example 7 α (t) = p + tv is a straight line through p in the v direction,

α (t) = (a cos t, a sin t, 0) is a circle in the x - y plane, though it is a curve in

R3,

α (t) = (a cos t, a sin t, bt) is a (right-hand) helix in R3.

Definition 8 Let α : I → Rn be a curve in Rn. The velocity vector of α

at t is the tangent vector

α′ (t) = (α′1 (t) , ..., α′n (t))
T
α(t) .

Note that α′(t) is a vector field on the curve, i.e. to every point on the curve,

α(t), it associates a tangent vector α′(t).

Question Let f be a differentiable map f : Rn → R and α a curve in Rn.

What is the rate of change of f along α?

Lemma 9 With the notation as above

df(α (t))

dt
= α′ (t) [f ] .

Proof by (1) above,

df(α (t))

dt
=

n∑
i=1

∂f

∂xi
(α (t))

∂αi
∂t

(t) .

Comparing with

vp [f ] =
n∑
i=1

∂f

∂xi
(p) vi

gives our result. �

Assume that if V a vector field on Rn, written as
∑n

i=1 fi Ui, then each

fi : Rn → R is a differentiable map.

Given a vector field V and a path α consider

V (α(t)) =
n∑
i=1

fi (α(t))Ui(α(t)) .
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Definition 10 We define the derivative V ′ at a point on the curve by

V ′(α(t)) =
n∑
i=1

d

dt
fi(α(t))Ui (α (t))

=
n∑
i=1

α′ (t)[fi] Ui (α (t))

by previous lemma.

The derivative V ′is a vector field defined on the curve and represents the

rate of change of V (p) as p goes along the curve.

Special Case 1. If V (α(t)) = α′(t), (so this vector field is defined only on

the curve, not all of Rn), then

α′′(t) =
n∑
i=1

d2

dt2
αi(t)Ui (α(t)) .

This is the acceleration of the curve at α (t).

Special Case 2. If V =
∑n

i=1 fi Ui is general but with the specific α (t) =

p + tv so α′(0) = vp. Then

V ′ (p + tv)|t=0 =
n∑
i=1

α′(0)[fi] Ui(α(0)) .

Lemma 11 Let U =
∑n

i=1 ui Ui, V =
∑n

i=1 vi Ui be vector fields; α a curve

and write U(t) = U(α(t)) etc. Then

i. (λU + µV )′ = λU ′ + µV ′ for all λ, µ ∈ R,
ii. (U • V )′ = U ′ • V + U • V ′,
iii. If U • V : I → R is constant then U ′ • V + U • V ′ = 0,

iv. For differentiable f : I → R

(fU)′ =
df

dt
U + fU ′.

Proof Exercise. �

This derivative of a vector field along a curve only depends on the initial

velocity of the curve, a tangent vector. So we could take this as the definition

of
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Definition 12 The covariant derivative of V w.r.t. vp is

∇vpV = V ′(p + tv)|t=0 =
n∑
i=1

vp[fi] Ui (p) .

This measures the initial rate of change of V (p) as p moves in the v

direction.

Lemma 13 Let U =
∑n

i=1 ui Ui, V =
∑n

i=1 vi Ui be vector fields and up, vp

tangent vectors. Then

i. for all λ, µ ∈ R,

∇λup+µvpU = λ∇upU + µλ∇vpU,

ii. for all λ, µ ∈ R,

∇vp (λU + µV ) = λ∇vpU + µ∇vpV,

iii. For differentiable f : I → R

∇vp (fU) = vp [f ]U(p) + f(p)∇vp (U) ,

iv.

vp [U • V ] = ∇vpU • V (p) + U(p) • ∇vpV.

Proof Exercise. For example

iii. The Right Hand Side equals

n∑
i=1

vp[ui]Ui(p) •
n∑
i=1

vi(p)Ui(p) +
n∑
i=1

ui(p)Ui(p) •
n∑
i=1

vp[vi]Ui(p)

=
n∑
i=1

(vp[ui] vi(p) + ui(p) vp[vi])

=
n∑
i=1

vp[uivi] = vp

[
n∑
i=1

ui vi

]
= vp[U • V ] .

�

The generalising to Vector Fields can continue. Let f : Rn → R be a

differentiable function and V a vector field on Rn.
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Definition 14 Define V [f ] to be a function Rn → R such that

V [f ](p) = V (p)[f ] ,

for all p ∈ Rn.

From vp[f ] = ∇f(p) • vp we see that V [f ](p) = ∇f(p) • V (p), the

component of the gradient vector at p in the direction of V (p). We could

thus write V [f ] = ∇f • V.

This makes it easy to prove

V [fg] = V [f ] g + fV [g] , (2)

for example.

The last definition has taken the previously defined vp [f ] to defined V [f ].

Similarly we can take the previously defined ∇vpW to define ∇VW :

Definition 15 If V , W are vector fields on Rn then ∇VW is a vector field

on Rn such that

∇VW (p) = ∇V (p)W

for all p ∈ Rn.

By the definition ∇vpV =
∑n

i=1 vp[fi] Ui(p) we have

∇VW (p) = ∇V (p)W =
n∑
i=1

V (p) [wi] Ui(p) =
n∑
i=1

V [wi] (p) Ui(p) ,

having used the previous definition. Thus we can write

∇VW =
n∑
i=1

V [wi] Ui.

Then, for differentiable f : Rn → R result (2) gives

∇V (fW ) =
n∑
i=1

(fV [wi] + wiV [f ])Ui

= ∇V (W ) f + V [f ]W.
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Or, for two vector fields U =
∑n

i=1 ui Ui and W =
∑n

i=1wi Ui on Rn,

V [U •W ] = V

[
n∑
i=1

uiwi

]

=
n∑
i=1

V [uiwi] since V is linear, see () .

=
n∑
i=1

(uiV [wi] + wiV [ui]) by ()

= U • ∇V (W ) +W • ∇V (U) .

Recap

For vp ∈ T (R3) and differentiable f : R3 → R we define vp[f ] =

f ′(p + tv)|t=0 ∈ R.

A vector field on R3 is a map V : R3 → T (R3) such that for p ∈ R3,

V (p) ∈ Tp(R3). Then we can define V [f ] : R3 → R, p 7→ V (p) [f ].

Alternatively given a vector field W on R3 and vp ∈ T (R3) we could

follow the definition of vp [f ] and define vp[W ] = W ′(p + tv)|t=0 ∈ Tp(R3).

In fact, this is denoted by ∇vp [W ] .

Now we have the definition of ∇vp [W ] given V, another vector space on

R3, define ∇V [W ] : R3 → T (R3) by ∇V [W ] (p) = ∇V (p) [W ].

All the quantities measure the initial rate of change of either a scalar

-valued function or vector field as you leave a point p in direction v. The

direction will either be given or will be the value of some vector field at p.
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1-forms

Definition 16 A 1-form φ on R3 is a real-valued function on the set of all

tangent vectors to R3such that φ is linear at each point of R3, that is

φ(avp + bwp) = a φ(vp) + b φ(wp) ,

for all a, b ∈ R, vp,wp ∈ Tp (R3) for all p ∈ R3.

So φ : T (R3) → R. On an initial glance this appears different to the

differential 1-form defined in the Calculus of Several Variables course as a

function ω : U ⊆ Rn → Hom (Rn,R). But to evaluate ω in CoSV we need

take p ∈ U and v ∈ Rn when ωp (v) can then be calculated. We can say that

ω depends on, is a function of, vp. For this reason, given ω satisfying the

CoSV definition of a 1-form define ω̃ : T (R3) → R by ω̃ (vp) = ωp (v) ∈ R
for all vp ∈ T (R3). This new function ω̃ is linear because of the definition

of Hom (Rn,R) as the set of linear functions and so ω̃ satisfies definition 16.

Note from above that, given the differentiable f : R3 → R, the derivative

vp[f ] is linear in that vp[af + bg] = avp[f ]+bvp[g] . So we have an example

of a 1-form satisfying definition 16 in the following.

Definition 17 Given the differentiable f : R3 → R,the differential 1-

form df is defined by

df(vp) = vp[f ] ,

for all tangent vectors vp.

This can be shown to have all the properties seen in the CoSV course.

For example, label the projection functions as xi : R3 → R, x 7→ xi, i = 1, 2

or 3. Then, for vp ∈ T (R3),

dxi(vp) =
d

dt
xi(p + tv)

∣∣∣∣
t=0

=
d

dt

(
pi + tvi

)∣∣∣∣
t=0

= vi,

for i = 1, 2 and 3.

Given a 1-form φ (satisfying definition 16) write vp =
∑3

j=1 v
j Uj(p) so,

by linearity,

φ(vp) =
3∑
j=1

vj φ (Uj(p)) =
3∑
j=1

φj(vp) dxi(vp)
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where φj : T (R3) → R is defined by vp 7→ φ (Uj(p)). Thus we can write

φ =
∑3

j=1 φj dx
i.

If φ = df for some differentiable f then

df(Uj(p)) =
d

dt
f (p + t Ui)

∣∣∣∣
t=0

=
∂

∂xi
f(p) .

and so

df(vp) =
3∑
j=1

vj df(Uj(p)) =
3∑
j=1

∂

∂xi
f(p) dxi(vp) .

So we can write

df =
3∑
j=1

∂f

∂xi
dxi.

Jacobian Matrix

Definition 18 Let F : Rn → Rm be a mapping. Then define the derivative

map F∗ on T (Rn) as follows. Given v ∈ T (Rn) there exists p ∈ Rn such

that v = vp ∈ Tp (Rn). Then set

F∗ (v) =
d

dt
F(p + tv)

∣∣∣∣
t=0

.

This is the derivative of a curve t 7→ F(p + tv) and so a tangent vector

(with point of application F(p)). Thus F∗ : T (Rn)→ T (Rm) .

We cannot say that F∗ is linear since we can only add together vectors

with the same point of application. But we can restrict F∗ to Tp (Rn), getting

the map F∗p : Tp (Rn) → TF(p) (Rm). This map is linear and the matrix

associated with this linear map is the Jacobian matrix of F at p.
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